

BWO – Expertise – 13.02.2025

Abschattungseffekte und die Effizienz der Energieerzeugung Offshore

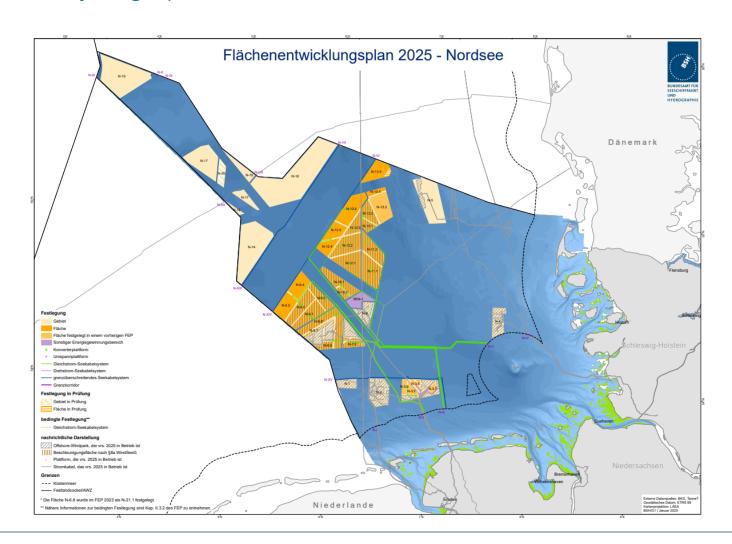
Dr. Lukas Vollmer, Dr. Martin Dörenkämper

Fraunhofer Institut für Windenergiesysteme (IWES)

Abschattungseffekte und die Effizienz der Energieerzeugung Offshore Agenda

- 1. Übersicht über Projekte und Methoden des Fraunhofer IWES
- 2. Von Leistungsdichte zu Volllaststunden
- 3. Optimierungspotenziale

Projekte und Methoden


Beratung des Bundesamts für Seeschifffahrt und Hydrographie (BSH)

Ausbauziele in Deutschland:

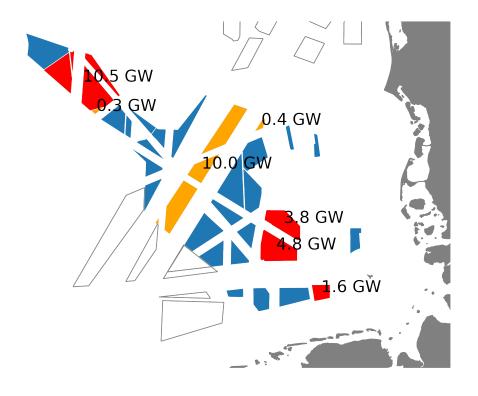
- Installiere Kapazität (2. HJ 2024): 8.9 GW
- Ausbauziel: mindestens 70 GW

Anfrage des BSH:

- Abschätzung des Energieertrags von verschiedenen Ausbauszenarien als Grundlage / Feedback zu getroffenen Festsetzungen
- Einfluss von Leistungsdichte und Turbinentechnologie auf den Energieertrag
- Verwendung von Modellierungsmethoden, die ein realistisches Bild zukünftiger Abschattungsverluste liefern können (Mehr Infos dazu: [2])
 - ► Beratungsprojekt seit September 2021 [2,3,4,5]

Projekte und Methoden

Offshore-Flächenpotenziale 2050 (BWO, 2022) [6]


Co-Nutzungspotenzial

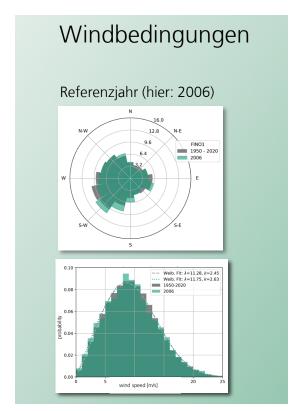
 Untersuchung von Szenarien zum Ertragspotenzial in der Deutschen Bucht mit und ohne Co-Nutzung

Ergebnisse:

- Co-Nutzungs-Szenarien zeigen Ausbaumöglichkeit von über 70 GW bei gleichzeitig über 3600 Volllaststunden im Mittel
- Bei hohem Co-Nutzungsanteil ließen sich über 290 TWh mittlerer Jahresenergieertrag realisieren

 Methodik wurde in weiteren nicht-öffentlichen Studien mit diversen Projektpartner angewendet und wird in laufenden Forschungsprojekten weiterentwickelt





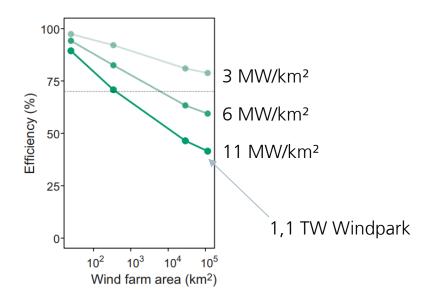
Methoden

Simulationsszenarion zur Berechnung des Jahresenergieertrags (AEP)

Annahmen Ablauf

Definition von Szenarien

WindparklayoutErstellung

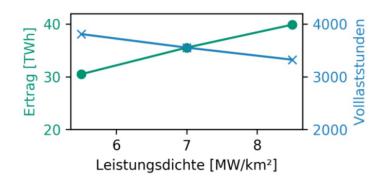

Simulation

Auswertung von AEP, Zeitreihen usw.

Theorie

- Leistungsdichte = Installierte Leistung pro Fläche (MW/km²)
- Volllaststunden = Jahresenergieertrag pro installierter Leistung (GWh/GW = h pro Jahr)
- Effizienz / Parkwirkgrad = Ertrag mit Abschattung / Bruttoertrag (%)
- Volllaststunden abhängig von
 - Lage / Windbedingungen
 - 2. Leistungsdichte
 - 3. Größe
 - 4. Technologie, Nabenhöhe

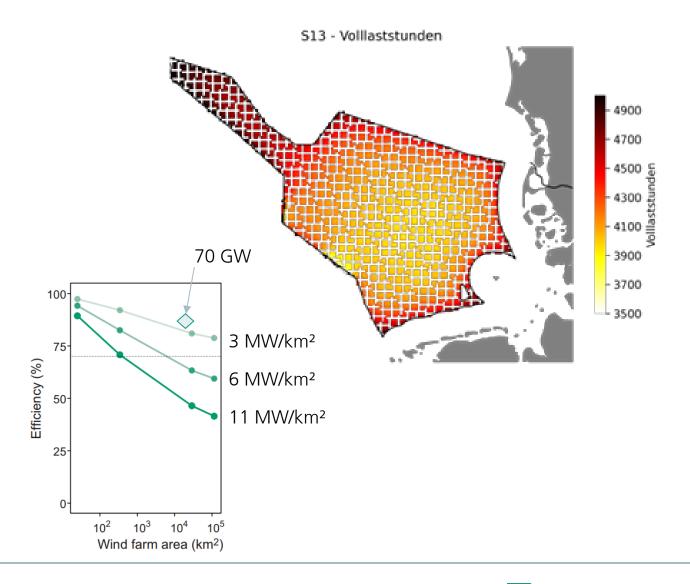
Einfluss der Windparkgröße und Leistungsdichte eines fiktiven Offshorewindparks auf den Parkwirkgrad [7]


Disclaimer: Die Ertragszahlen berücksichtigen keinerlei weitere Verluste (Verfügbarkeit, elektrisch, Abregelung, etc.)

Theorie

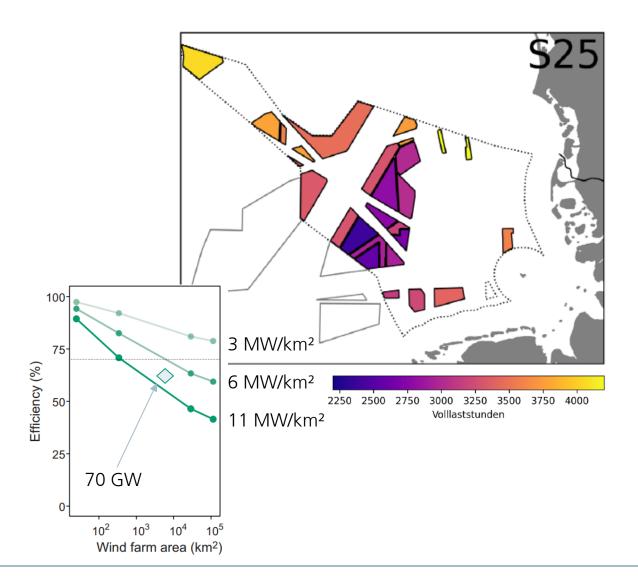
- Leistungsdichte = Installierte Leistung pro Fläche (MW/km²)
- Volllaststunden = Jahresenergieertrag pro installierter Leistung (GWh/GW = h pro Jahr)
- Effizienz / Parkwirkgrad = Ertrag mit Abschattung / Bruttoertrag (%)
- Volllaststunden abhängig von
 - Lage / Windbedingungen
 - 2. Leistungsdichte
 - 3. Größe
 - 4. Technologie, Nabenhöhe
- Energiertrag (GWh)
 - Mit jeder installierten Anlage steigt der Energieertrag

Disclaimer: Die Ertragszahlen berücksichtigen keinerlei weitere Verluste (Verfügbarkeit, Elektrisch, Abregelung, etc.)

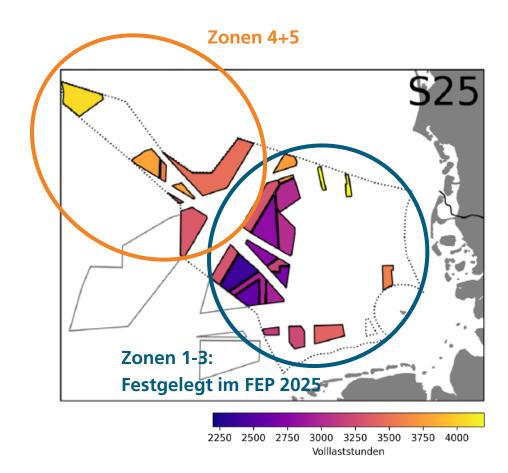


Einfluss der Änderung der Leistungsdichte im Cluster aus N-11, N-12, N-13 [2]

Deutsche Nordsee

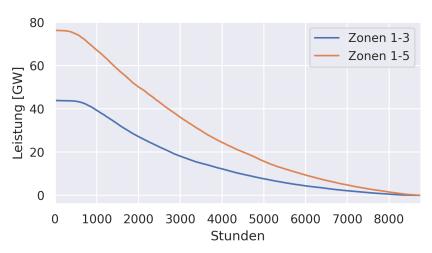

- Hypothetisches Szenario [2] gleichmäßige Verteilung von 70
 GW auf die Nordsee
 - Leistungsdichte = 2,4 MW/km²
 - Gesamtertrag = 300 TWh
 - Mittlere Volllaststunden = 4300 h
 - Effizienz = 83 %

Deutsche Nordsee


- Szenario 25 [5] Verteilung von 70 GW auf die Nordsee in vorhandene Flächen
 - Leistungsdichte = 9,2 MW/km²
 - Gesamtertrag = 225 TWh
 - Mittlere Volllaststunden = 3250 h
 - Effizienz = 63 %
- Etwa 45% des aktuellen Strombedarfs Deutschlands
- Kombination aus Ertrag und Volllaststunden der Windparks an keinem Onshore-Standort erreichbar

Erhöhung der Leistungsdichte vs. Gebietserweiterung

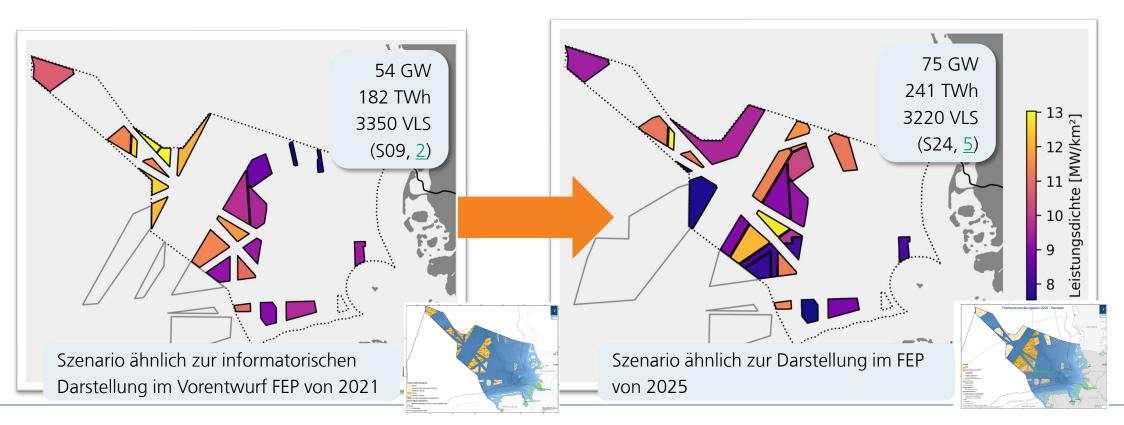

- Festlegung nach FEP 2025
 - Zu installiernde Leistung in den Zonen 1-3 bereits festgelegt (40 GW)
 - Optimierungspotenzial nur in Zonen 4 + 5 (mindestens 30 GW)
- Optimierungsstrategien
 - Erhöhung der Leistungsdichte
 - > Reduktion der Volllaststunden
 - Reduktion der Leistungsdichte
 - Weniger Energieertrag
 - Erweiterung auf weitere Gebiete
 - ➤ Höhere Volllaststunden in Zonen 4 + 5


Erhöhung der Leistungsdichte vs. Gebietserweiterung

- Zeitabhängigkeit des Mehrertrags
 - Erhöhung der Leistungsdichte
 - > Mehrertrag in erster Linie bei Erreichen von Nennleistung

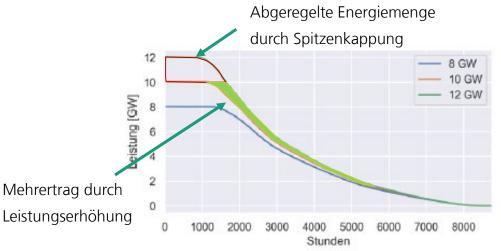
Jahresdauerlinien zu: Einfluss der Änderung der Leistungsdichte im Cluster aus N-11, N-12, N-13 [2]

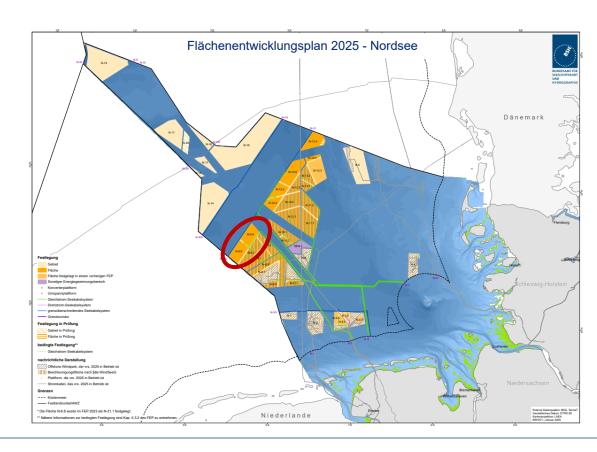
- Erweiterung auf weitere Gebiete
 - > Signifikanter Mehrertrag bei allen Windgeschwindigkeiten
 - > Stabilisierung des Offshore-Windertrags



Jahresdauerlinien zu: Einfluss der Erweiterung der installierten Leistung auf die Zonen 4+5 [auf Basis von 5]

Erhöhung der Leistungsdichte vs. Gebietserweiterung


- Gebietserweiterung seit FEP 2020
 - Erweiterung der installierten Leistung um 20 GW durch Gebietserweiterung



Aktueller Ansatz BSH im FEP 2025 - Reduktion ONAS durch Spitzenkappung

- Kosteneinsparung durch Reduktion von Offshore-Netzanbindungssystemen (ONAS)
 - Mehr installierte Windparkleistung als installierte Netzleistung
 - Erstmalig geplant im FEP 2025 für die Flächen N-9.4, N-9.5 (120%)
 - Mehrertrag von 660 GWh (10%) durch Leistungserhöhung
 - Abregelung von 610 GWh durch Spitzenkappung [5]

Beispielhafter Einfluss der Spitzenkappung auf den Energieertrag aus dem Cluster aus N-11, N-12, N-13 [2]

Abschattungseffekte und die Effizienz der Energieerzeugung Offshore

Zusammenfassung

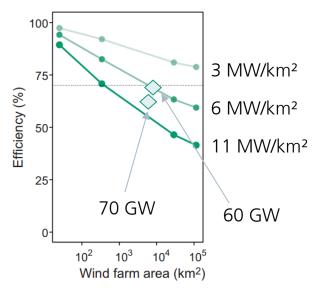
Theorie zu Leistungsdichte und Volllaststunden

- Jede zusätzliche Windenergieanlage in der Nordsee erhöht den Energieertrag
- Bei Erhöhung der Leistungsdichte sinken die Volllaststunden
- Erweiterung der Gebiete aus Effizienzgründen vorteilhafter gegenüber Erhöhung der Leistungsdichte

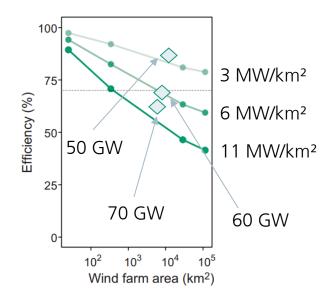
Offshore Windenergie in Deutschland

- Fortschreibung des FEP zeigt die erfolgreiche Erweiterung der nutzbaren Gebiete zum Erreichen der Zukunftssicherung der Stromversorgung
- Ausbau in Zonen 4+5 aus mehreren Gesichtspunkten wichtig (Volllaststunden, zeitlich stabile Versorgung)
- Spitzenkappung reduziert Strommenge in Zeiten hoher Einspeisung

Ausblick


Zeitreihen aus den BSH-Szenarien ermöglichen weitere Nutzungsbetrachtungen, z.B. Spitzenkappung,
 Speicherbedarfe, Netzausbau

Deutsche Nordsee – Variation der installierten Leistung


- Gedankenexperiment Erreichung des selben Ertrags mit reduzierter Leistung
 - 60 GW installierte Leistung
 - Zu erzielender Gesamtertrag = 225 TWh
 - Resultierende Volllaststunden = 3750 h (72%)
 - Notwendige Leistungsdichte = ca. 6 MW/km²
 - Notwendige Fläche = 50% mehr Fläche

Deutsche Nordsee – Variation der installierten Leistung

- Gedankenexperiment Erreichung des selben Ertrags mit reduzierter Leistung
 - 60 GW installierte Leistung
 - Zu erzielender Gesamtertrag = 225 TWh
 - Resultierende Volllaststunden = 3750 h (72%)
 - Notwendige Leistungsdichte = ca. 6 MW/km²
 - Notwendige Fläche = 50% mehr Fläche
 - 50 GW installierte Leistung
 - Zu erzielender Gesamtertrag = 225 TWh
 - Resultierende Volllaststunden = 4500 h (87%)
 - Notwendige Leistungsdichte = < 3 MW/km²</p>
 - Notwendige Fläche = Fläche der kompletten AWZ

